
Análise de Sensibilidade

- Solução Degenerada
- Solução Gráfica
- Análise dos Coeficientes da Função Objetivo
- A Análise do Lindo
- A análise do Excel
- O Limite dos coeficientes das Restrições
 - Lindo
 - Excel
- Analisando todas as respostas do Excel
 - Answer Report
 - Análise Econômica
 - Sensitivity Report
 - Limits Report
 - Solução Degenerada
- Interpretação Econômica do Problema Dual
 - Preço-Sombra Shadow Price
 - Custo Reduzido *Reduced Cost*
- Caso Motorela Celulares
- Caso Agropecuária Coelho
- Intervalos de validação
 - Shadow Price ou Dual Price
 - Reduced Cost

Introdução

- Coeficientes são considerados constantes
- No mundo real quase nunca se tem certeza desses valores;
- Necessidade de análise pós-otimização:
 - Possíveis variações nos coeficientes sem que isto altere a solução ótima;
 - Caso haja alterações significativas o que fazer para encontrar o novo ótimo sem resolver novamente todo o problema;
- Análise de Sensibilidade:
 - Qual o efeito de uma mudança num coeficiente da função-objetivo?
 - Qual o efeito de uma mudança numa constante de uma restrição?
 - Qual o efeito de uma mudança num coeficiente de uma restrição?
 - o Serve também para amenizar a hipótese de certeza nos coeficientes e constantes.
- Tipos básicos de análise de sensibilidade:
 - o Estabelece limites inferiores e superiores para todos os coeficientes da função-objetivo e constantes das restrições:
 - Lindo/Excel;
 - Hipótese de uma alteração a cada momento;
 - o Verifica se uma ou mais mudanças em um problema alteram a sua solução ótima
 - Pode ser feito através da alteração do problema e sua nova resolução.

Coeficientes da Função Objetivo

- As três retas pertencem a uma mesma família de retas, pois têm o ponto (25;20) em comum.
- Uma diferença entre elas é no coeficiente angular.
- A mudança de um coeficiente da função-objetivo causará uma alteração no coeficiente angular da função-objetivo
- Portanto, enquanto o coeficiente angular da funçãoobjetivo estiver entre os das retas limites a solução ótima não se alterará.

• Declividade da reta B

$$\frac{3}{5} x_{1} + \frac{3}{10} x_{2} = 21$$

$$\frac{3}{10} x_{2} = 21 - \frac{3}{5} x_{1}$$

$$x_{2} = \frac{10}{3} (21 - \frac{3}{5} x_{1})$$

$$x_{2} = 70 - 2 x_{1}$$

• Declividade da reta A

$$\frac{2}{5}x_{1} + \frac{1}{2}x_{2} = 20$$

$$\frac{1}{2}x_{2} = 20 - \frac{2}{5}x_{1}$$

$$x_{2} = 40 - \frac{4}{5}x_{1}$$

$$x_{2} = 40 - 0.8x_{1}$$

Coeficientes da Função Objetivo

• A forma geral da função objetivo é dada por:

$$z = c_1 x_1 + c_2 x_2$$

Que na Forma declividade-Interseção é dada por

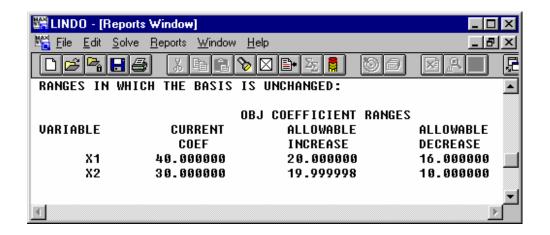
$$x_2 = -\frac{c_1}{c_2} x_1 + \frac{z}{c_2}$$

• Uma variação por vez:

$$-2 \le -\frac{c_1}{c_2} \le -0.8 \quad \text{para } c_2 = 30 \text{ temos}$$

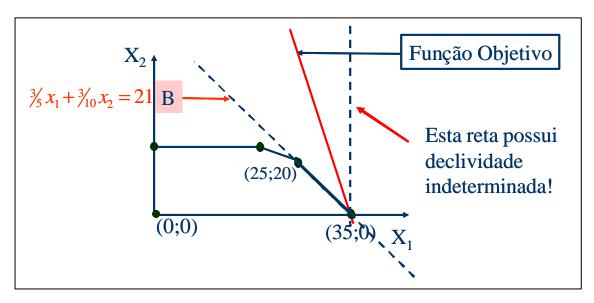
$$-2 \le -\frac{c_1}{30} \le -0.8 \Rightarrow \begin{cases} -\frac{c_1}{30} \ge -2 & \Leftrightarrow c_1 \le 60 \\ -\frac{c_1}{30} \le -0.8 & \Leftrightarrow c_1 \ge 24 \end{cases}$$

$$24 \le c_1 \le 60$$


$$-2 \le -\frac{c_1}{c_2} \le -0.8 \quad \text{para } c_1 = 40 \text{ temos}$$

$$-2 \le -\frac{40}{c_2} \le -0.8 \Rightarrow \begin{cases} -\frac{40}{c_2} \ge -2 & \Leftrightarrow c_2 \ge 20 \\ -\frac{40}{c_2} \le -0.8 \Leftrightarrow c_2 \le 50 \end{cases}$$

$$20 \le c_2 \le 50$$


Coeficientes da Função Objetivo

- Pode ser feita analiticamente
- Softwares, como o LINDO e EXCELL, costumam fazer este tipo de análise:

Caso Especial

- Um caso especial de limite de crescimento acontece quando a rotação da função objetivo em torno do extremo ótimo passa pela reta vertical;
- Isso significa que não existirá ou o limite superior ou inferior para a declividade;

Constantes das Restrições

Preço-Sombra

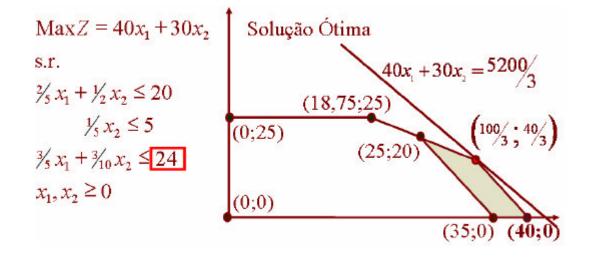
- O preço-sombra contabiliza o que o Lucro Total (\mathbf{Z}) seria melhorado, caso a quantidade do recurso i (b_i) pudesse e fosse aumentada uma quantidade igual à unidade.
- Indica o que está sendo pago por não ter mais unidades do recurso (maximização do lucro). Ou ainda, diz o preço justo a ser pago para ter uma unidade extra do produto (minimização de custos).

MaxZ =
$$40x_1 + 30x_2$$

s.r.

$$\frac{2}{5}x_1 + \frac{1}{2}x_2 \le 20$$

$$\frac{1}{5}x_2 \le 5$$

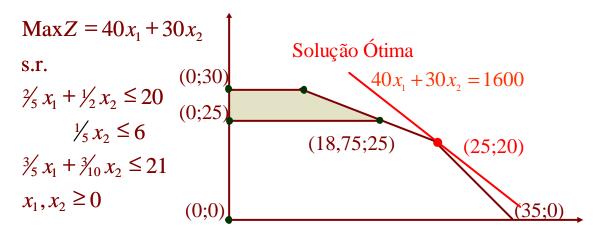

$$\frac{3}{5}x_1 + \frac{3}{10}x_2 \le \boxed{21}$$

$$x_1, x_2 \ge 0$$
MaxZ = $40x_1 + 30x_2$
s.r.

$$\frac{2}{5}x_1 + \frac{1}{2}x_2 \le 20$$

$$\frac{3}{5}x_1 + \frac{3}{10}x_2 \le \boxed{24}$$

$$x_1, x_2 \ge 0$$



Limites das Constantes das Restrições

- Na primeira situação tínhamos Z = 1600
- Dado o acréscimo de 3 unidades na segunda restrição obtivemos:

$$Z = \frac{5200}{3}$$

- Portanto:
 - Alteração da Função Objetivo: $\frac{5200}{3} 1600 = \frac{400}{3}$
 - Logo, preço de sombra : $\frac{400}{3} = 44,44$

- O conjunto de soluções viáveis se alterou
- Essa restrição não limita à solução ótima, que não se alterou
- Qual é o preço de sombra desta restrição? ZERO

Interpretação Econômica do Dual

 Os Preços-Sombra equivalem à solução ótima do Dual, onde as constantes das restrições são os coeficientes da função-objetivo;

PRIMAL DUAL $Max \ Z = 5 \ x_1 + 2 \ x_2$ $Min \ 3 \ y_1 + 4 \ y_2 + 9 \ y_3$ sujeito a st $x_1 \le 3$ $y_1 + y_3 \ge 5$ $x_2 \le 4$ $y_1 + y_3 \ge 5$ $x_1 + 2x_2 \le 9$ $y_2 + 2y_3 \ge 2$ $x_1 \ e \ x_2 \ge 0$ $y_1, y_2, y_3 \ge 0$

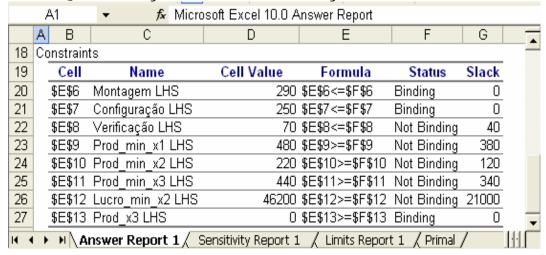
- Cada variável y_i do Dual está diretamente relacionada com a restrição i do problema Primal;
- O valor ótimo desta variável, y_i^* , é justamente o Preço-Sombra (*Shadow Price* ou *Dual Price*) do recurso i;
- Portanto, cada restrição i possui um preço-sombra y_i*
- O preço-sombra para o recurso i (y_i^*) mede o valor marginal (incremental) deste recurso em relação ao lucro total.

Coeficientes das Restrições Custo Reduzido

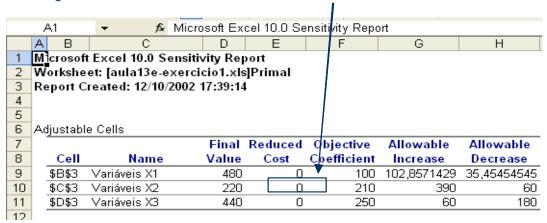
- Cada variável do problema original possui um determinado custo reduzido que significa:
 - 1. O total que o seu coeficiente na função-objetivo deve melhorar para que ela deixe de ser zero na solução ótima (ou seja, se tornar básica);
 - 2. Quanto a função-objetivo irá piorar para cada unidade que ela aumente a partir de zero;
- Cada variável de folga/excesso do Dual está diretamente relacionada a uma determinada variável original do problema Primal;
- Se uma variável do problema original for maior que zero, o valor da variável do Dual relacionada será zero, i.e., o custo reduzido será zero;
- O custo reduzido só se aplica às variáveis que, na solução ótima, são zero.

Para produzir 3 tipos de telefones celulares, a fábrica da Motorela utiliza três processos diferentes, o de montagem, a configuração e a verificação. Para fabricar o celular Multi-Tics, são necessárias 0,1 h de montagem, 0,2 h de configuração e 0,1 h de verificação. O mais popular Star Tic Tac requer 0,3 h de montagem, 0,1 h de configuração e 0,1 h de verificação. Já o moderno Vulcano necessita de 0,4 h de montagem, 0,3 h para configuração, porém, em virtude de seu circuito de última geração, não necessita de verificação. A fábrica dispõe de capacidade de 290 hs/mês na linha de montagem, 250 hs/mês na linha de configuração e 110 hs/mês na linha de verificação. Os lucros unitários dos produtos Multi-Tics, Star Tic-Tac e Vulcano são R\$ 100, R\$ 210 e R\$ 250, respectivamente e a Motorela consegue vender tudo o que produz. Sabe-se ainda que o presidente da Motorela exige que cada um dos três modelos tenha produção mínima de 100 unidades e quer lucrar pelo menos R\$ 25.200/mês com o modelo Star Tic-Tac. O presidente também exige que a produção do modelo Vulcano seja pelo menos o dobro do modelo Star Tic-Tac.

- *x*₁- Número de celulares Multi-Tics produzidos mensalmente.
- x₂- Número de celulares Star Tic-Tacs produzidos 7 mensalmente.
- *x*₃- Número de celulares Vulcanos produzidos mensalmente.


$$Max 100x_1 + 210x_2 + 250x_3$$

- Produção
 - Linha de Montagem $0.1x_1 + 0.3x_2 + 0.4x_3 \le 290$
 - Linha de Configuração $0.2x_1 + 0.1x_2 + 0.3x_3 \le 250$
 - Linha de Verificação $0.1x_1 + 0.1x_2 \le 110$
- ◆ Produção Mínima $x_1 \ge 100; x_2 \ge 100; x_3 \ge 100$
- ◆ Lucro Mínimo Star Tic-Tac $210x_2 \ge 25200$
- ◆ Produção Vulcano $x_3 \ge 2x_2$
- Não Negatividade $x_1; x_2; x_3 \ge 0$

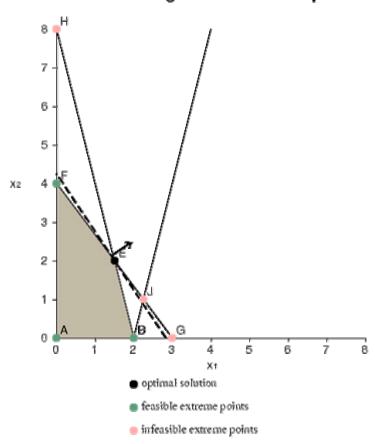

	A	В	С	D	E	F	G
1		X1	X2	Х3			
2	Coef. F.Objetiva	100	210 250			Ų.	
3	Variáveis						
4	Z=	0		ľ	ii		
5	Restrições				LHS	RHS	Tipo
6	Montagem	0,1	0,3	0,4	0	290	<=
7	Configuração	0,2	0,1	0,3	0	250	<=
8	Verificação	0,1	0,1	0	0	110	<=
9	Prod_min_x1	1	0	0	0	100	>=
10	Prod_min_x2	0	1	0	0	100	>=
11	Prod_min_x3	0	0	1	0	100	>=
12	Lucro_min_x2	0	210	0	0	25200	>=
13	Prod_x3	0	-2	1	0	0	>=
14	2000				l i		

	А	В	С	D	Е	F	G	_	
1		X1	X2	X3					
2	Coef. F.Objetiva	100	210	250					
3	Variáveis	480	220	440					
4	Z=	204200							
5	Restrições				LHS	RHS	Tipo		
6	Montagem	0,1	0,3	0,4	290	290	<=		
7	Configuração	0,2	0,1	0,3	250	250	<=		
8	Verificação	0,1	0,1	0	70	110	<=		
9	Prod_min_x1	1	0	0	480	100	>=		
10	Prod_min_x2	0	1	0	220	100	>=		
11	Prod_min_x3	0	0	1	440	100	>=		
12	Lucro_min_x2	0	210	0	46200	25200	>=		
13	Prod_x3 0		-2	1	0	0	>=	•	
H →	■ ◆ ▶ N Answer Report 1 / Sensitivity Report 1 / Limits Report 1 \ Primal /								

Que restrições limitam a solução ótima?

 Quanto deve ser melhorado no lucro unitário para que se produza o modelo Star Tic-Tac?

 Até quanto você pagaria por uma hora de verificação terceirizada?


13	Constrain						
14	Constrain	15	Final	Shadow	Constraint	Allowable	Allowable
15	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
16	\$E\$6	Montagem LHS	298	480	290	81,42857143	75
17	\$E\$7	Configuração LHS	250	260	250	60	51,81818182
18	\$E\$8	Verificação LHS	70	0	110	1E+30	40
19	\$E\$9	Prod_min_x1 LHS	480	0	100	380	1E+30
20	\$E\$10	Prod_min_x2 LHS	220	0	100	120	1E+30
21	\$E\$11	Prod_min_x3 LHS	440	0	100	340	1E+30
22	\$E\$12	Lucro_min_x2 LHS	46200	0	25200	21000	1E+30
23	\$E\$13	Prod_x3 LHS	0	-20	0	300	600
24							

 Até quanto você pagaria por uma hora de montagem terceirizada?

13	Constrain	ts						
14			Final	Shadow	Cor	nstraint	Allowable	Allowable
15	Cell	Name	Value	Price	R.F	H. Side	Increase	Decrease
16	\$E\$6	Montagem LHS	290	480		290	81,42857143	75
17	\$E\$7	Configuração LHS	250	260		250	60	51,81818182
18	\$E\$8	Verificação LHS	70	0		110	1E+30	40
19	\$E\$9	Prod_min_x1 LHS	480	0		100	380	1E+30
20	\$E\$10	Prod_min_x2 LHS	220	0		100	120	1E+30
21	\$E\$11	Prod_min_x3 LHS	440	0		100	340	1E+30
22	\$E\$12	Lucro_min_x2 LHS	46200	0		25200	21000	1E+30
23	\$E\$13	Prod_x3 LHS	0	-20		0	300	600
24					\mathcal{T}			

Solução Degenerada

Feasible Region in Decision Space

- Quando se define qual a variável básica que sai e o mínimo é atingido em mais do que um dos quocientes (empate no critério de saída) obtém-se uma solução básica degenerada, i.e., com variáveis básicas nulas.
- O Algoritmo Simplex nestes casos pode entrar em "loop" i.e., pode começar a reproduzir periodicamente as mesmas soluções básicas, mantendo-se constante o valor da f.o. e nunca atingir o valor ótimo.